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Abstract 

The elastic modulus is a material property that is easy to measure macroscopically and very useful. It correlates well with 

various thermodynamic material properties such as melting point and heat of evaporation. The relationship between 

elastic modulus and location in the periodic table, along with several thermodynamic properties will been examined for 

elemental metals. It is shown that the stiffness and resistance to evaporation of these materials is largest in the center of 

a period, while the atomic volume is smallest near the center.  Overall, cohesive energy and bond strength is shown to be 

the underlying cause in the correlation between elastic modulus and other material properties.  

Introduction 

This paper will be focusing on the interrelationships 

between mechanical properties of metals such as 

elastic modulus and their relationship with 

thermodynamic properties such as heat of 

evaporation and melting point.  Explanations for the 

correlations between mechanical and 

thermodynamic properties of metal elements will 

be examined, and figures from several classic 

papers on the matter will be highlighted.  

Elastic modulus is a bulk material property that 

measures the stiffness of a material exposed to a 

stress. It can be defined for both macroscopic and 

atomic level properties, which is part of its utility. 

Elastic modulus E as derived from Hooke’s law is 

defined as:   

𝐸 =  
𝜎

𝜀
=  

𝑘

Ω
 

Thereby relating measurable quantities such as 

tensile stress and strain to the less visible properties 

- interatomic spring constant and atomic volume. In this paper we will examine the experimental and theoretical 

relationship between the elastic modulus of an elemental metal and thermodynamic properties such as melting 

temperature and heat of evaporation.  

Figure 1. Atomic volume of the atoms of the fourth, fifth, and sixth 

periods of the Periodic Table [1].  
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Another theme in this paper will be visually demonstrating the trends between positioning in the periodic table and 

quantities such as atomic volume and elastic modulus, as in figure 1. Plotting data in such a way elicits interesting 

observations about the relationship of the given property with atomic number, electronegativity, and bonding strength. 

Figure 1 plots the atomic volume of solid elements in the 4th, 5th, and 6th periods. One can see that both ends of the period 

exhibit high atomic volumes, while there is a very large dip and minima in the center of each period.  For each row of the 

periodic table to show such similar behavior must be an insight into the underlying reason. This paper will examine several 

such plots and discuss the reasons and mechanisms for such behavior.  

Overall this paper aims to examine several figures from the literature regarding the relationship between Young’s modulus 

and thermodynamic properties, along with position on the periodic table influences in bulk material properties.  

Experiment and Theory  

In this segment several figures from influential papers will be reviewed.  Explanations from theory will be discussed, and 

simple models to demonstrate those relationships will be developed.  As stated in the introduction, there have been 

papers that experimentally relate the Young’s modulus to cohesive energy, or demonstrate it as a function of position in 

the periodic table for elemental metals. These visualizations can be very useful in understanding the underlying cause of 

variation in the modulus for neighboring elements.  

Figure 2 demonstrates the linear relationship between the heat of evaporation and bulk modulus for various metals [3]. 

The paper details how the group plotted all the metals and got a very poor line of fit. However, they then realized that 

Figure 2. 



 

structural differences at the melting point may be causing varying trends between A2 and A1 & A3 metals [3]. When they 

separated those groups and re-plotted the data, they observed that each group could be represented quite well by a linear 

trendline. The correlations they arrived at relate the bulk modulus B linearly to the cohesive energy density (the cohesive 

energy divided by the atomic volume) with correlation factors above 0.91 [3].  

We can attempt to model this behavior by deriving a mathematical relationship between the elastic modulus and the heat 

of evaporation. This calculation will require some approximations since a rigorous analysis of the potential well for 

interatomic forces would be mathematically rigorous. However, we can approximate the force-displacement curve of an 

atom being removed from a bulk material with a simple half sin curve described by the equation 𝐹 =  𝐹0 sin (
2𝜋𝑈

𝜆
) [2]. 

The curve has a slope of the spring constant k as displacement goes to zero, and a maximum value of 𝐹0 =
𝜆𝑘

2𝜋
.  By 

definition, the work of breaking the bonds is given by: 

𝑊𝐵 =  ∫ 𝐹(𝑈)𝑑𝑈 =  
𝜆𝐹0

𝜋

𝜆/2

0

=  
𝑘𝜆2

2𝜋2
  (

𝐽

𝑎𝑡𝑜𝑚
)      (1) 

Now an approximation must be made about the displacement value reached at fracture, 𝑈𝑓.  For this derivation we will 

take the displacement at fracture to be equal to 1/8th of the interatomic spacing.  The microscopic version of the Young’s 

modulus is defined as the spring constant k divided by the interatomic spacing of the crystal, as derived from first 

principles. Combining all of that information, a relationship between the work of bond breaking and the Young’s modulus 

can be reached:  

𝑊𝐵 =  
𝜆2

2𝜋2
× 𝐸Ω

1
3 =  

𝐸Ω

8𝜋2
 (

𝐽

𝑎𝑡𝑜𝑚
)      (2) 

This relationship is exceedingly useful, as it relates measurable physical quantities to the thermodynamic work of bond 

breaking, which in turn can be related to the heat of evaporation with some geometric considerations. Since the total 

work of breaking bonds from an atom’s nearest neighbors depends on packing factor, the number of bonds broken must 

be taken into account.  With that in mind we define an 𝐸𝑧 = 𝐸 ∗
𝑍

6
 , where Z represents the number of nearest neighbor 

atoms in the crystal structure.  Defining the heat of evaporation of an atom: 

Δ𝐻𝑣  =  
𝑍

2
𝑊𝐵  =

𝑍

2
×

6𝐸𝑧

𝑍
×

Ω

8𝜋2
=  

3Ω𝐸𝑧 

8𝜋2
 (

𝐽

𝑎𝑡𝑜𝑚
)    (3) 

Δ𝐻𝑣

Ω
=

3

8𝜋2
𝐸𝑧      (

𝐽

𝑎𝑡𝑜𝑚
)     (4) 



 

𝑬𝒛 =
𝚫𝑯𝒗

𝛀
×

𝟖𝝅𝟐

𝟑
     (𝟓) 

Equation 5 demonstrates by derivation the linear 

nature of the relationship between heat of 

evaporation and the mechanical property 

Young’s modulus for our simplified model [2].  

This is applicable to figure 2 since the bulk 

modulus is very similar to the elastic modulus of 

most of the metals, and the cohesive energy and 

heat of vaporization are equivalent in this 

context.  This derivation can somewhat 

adequately model the behavior observed in 

figure 2, yet does not account for the clearly 

distinct empirical correlations for A1 and A3 vs A2 

metals [3]. Additionally, the numerical constant 

for the relationship changes based on the 

estimate of the bond stretching at fracture, and 

fails to predict the elastic modulus of copper by a 

factor of about 2 when compared to experiments 

[2]  

It makes conceptual sense that the Young’s modulus would be linearly correlated to the thermodynamic heat of 

evaporation, since both properties inherently rely on the bond strength between a metal atom and its neighbors. The 

elastic modulus, representing the stiffness of material, should certainly depend on the bon character and strength. A 

higher modulus means that the material will elastically deform less than materials with a lower modulus when exposed 

to a tensile stress. The bond strength is such that the atoms are able to cling to eachother strongly, making the material 

macroscopically stiff.  

On the other hand, the energy required to vaporize a metal atom depends similarly on the level of attraction an atom has 

to its neighbors. Energetically speaking bonds represent energy, and overcoming the energy barrier to free an atom and 

push it into the higher energy gas phase requires an energetical input. Since both of these material properties depend on 

Figure 3. Young’s modulus of the elements of the fourth, fifith, and 

sixth periods of the Periodic Table. Open points are estimated 

values. [1].  



 

bond strength and packing geometry it makes sense that they would be related in some way, even linearly for a given 

packing geometry.  

In figure 3 a plot of elemental Young’s modulus vs periodic group is depicted and shows interesting trends. Each period’s 

elements show a marked maximum of elastic modulus in the middle of the period. More specifically, those elements with 

many unpaired d orbital electrons are most likely to have a superior Young’s modulus. This is due to the fact that they are 

able to form the largest number of bonds with neighboring atoms, thus increasing their number of tethering mechanisms 

to the material.  

Figure 4 depicts the melting point trends of elemental metals when they are plotted according to their poition on the 

periodic table. One can observe that they are visually similar to figure 3.  Similarly to the above derivation, we can make 

a simple model for a relationship between melting point and heat of evaportation for a given material. We start with the 

equation for Gibbs free energy (6) and applying it to melting of a material.  At melting, the two phases are in 

thermodynamic equilibrium, so the change in gibbs free energy is set to zero, so the enthalpy of melting is equal to the 

melting temperature multiplied by the change in entropy of melting (8).  

Δ𝐺 =  Δ𝐻 − 𝑇Δ𝑆     (6) 

Δ𝐺𝑚 =  Δ𝐻𝑚 − 𝑇𝑚Δ𝑆𝑚 = 0     (7) 

Δ𝐻𝑚 = 𝑇𝑚Δ𝑆𝑚    (8) 

Making a simple assumption that the change in 

entropy upon melting is approximately the 

same for metals, we reach a relationship that 

shows the melting temperature is directly 

proportional to the Δ𝐻𝑚.  

𝑬𝒛 ∝ Δ𝑯𝒎  ∝ 𝑻𝒎   (9) 

In figure 4 we observe that the melting point 

trends very similarly to elastic modulus for the 

same elemental metals. Conceptually this 

seems reasonable as melting point is also 

related thermodynamically to the interatomic 

attractions within a bulk material.  
Figure 4. Melting point of the elements of the fourth, fifth, and sixth 

periods of the Periodic Table [1].  
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All of the trends demonstrated in these figures can be mechanistically explained by examining the concepts of cohesive 

energy and metallic bonding mechanisms. We see a maximum value of elastic modulus and melting temperature in the 

middle of each period.  This is because the middle elements such as iridium and osmium have high numbers of unpaired 

d electrons which they are able to use for interatomic bonding. Metallic bonding is modelled as positively charged nuclei 

surrounded by a “sea of electrons” that each constituent atom contributes to. The more valence electrons available for 

contribution to this type of bonding, the greater the cohesive force within the material. This is the reason that transition 

metals have very high melting points and elastic moduli. Both the d and s orbitals are available for bonding. This explains 

why the middle of the period metals exhibit the trends shown in figures 3 and 4.  

Furthermore, one can observe that as you go down periods in the periodic table, the maxima become higher in magnitude 

in figures 3 and 4. This is likely due to the increase in atomic number as you go down rows.  The higher the atomic number, 

the more constituent proton cations the nucleus of the atom contains. This indicates that the electrostatic interactions 

between the nuclei and the “sea of electrons” will be stronger in atoms with larger atomic numbers, as demonstrated in 

figures 3 and 4.  

These two factors discussed account mechanistically for the trends demonstrated in the above figures and explain why 

the elastic modulus can be related to various thermodynamic constants. This works because all of the material properties 

are inherently related to bond strength and material cohesion.  

Summary 

Overall, this paper has presented several experimental figures from the literature and attempted to explain the results 

both through simple derivations, and through mechanistic examination. Elastic modulus is a representation of bond 

strength within a given material and can therefore be correlated to thermodynamic material properties such as the 

melting point, and energy of vaporization.  The results of deriving from theory aren’t perfect, since factors like 

imperfections and packing structure will play a role in determination of thermodynamic properties. However, deriving the 

relationships from first principles is still a valuable and educational experience.  

The elastic modulus is a good predictor of all these thermodynamic properties, but ultimately is predicted by cohesive 

energy. This is because cohesive bond energy is the underlying root of the mechanical stiffness of a material, not the other 

way around. A general assessment of the elastic modulus, melting temperature, and heat of vaporization among other 

properties, can be made by examining the number of bonds possible in a metal matrix. Iridium and osmium have 

remarkably high values of the aforementioned properties due to their high number of unpaired d electrons. These 

electrons allow them to contribute a high number to the “sea of electrons” that is the nature of metallic bonding, thus 



 

increasing the nucleus’s electrostatic attraction to the material in bulk. This atomic level analysis of cohesion and bonding 

explain the nature of the relationship between elastic modulus and various thermodynamic material properties.  
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